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GEOMETRICAL GEODESY TECHNIQUES
IN GODDARD EARTH MODELS

F, J. Lerch
Goddard Space Flight Center
Greenbelt, Maryland

ABSTRACT

The method for combining geometrical data with satellite dy-
namical and gravimetry data for the solution of geopotential and
station location parameters is discussed. Geometrical tracking
data (simultaneous events) from the global network of BC-4
stations are currently being processed in a solution that will
greatly enhance the geodetic world system of stations. Previ-
ously the stations in Goddard Earth Models have been derived
only from dynamical tracking data. In this paper a linear re-
gression model is formulated for combining the data, based upon
the statistical technique of weighted least squares. Reduced
normal equations, independent of satellite and instrumental pa-
rameters, are derived for the solution of the geodetic parame-
ters. Exterior standards for the evaluation of the solution and
for the scale of the earth's figure are discussed.
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GEOMETRICAL GEODESY TECHNIQUES
IN GODDARD EARTH MODELS

I. INTRODUCTION

A matrix model employing a reduced form of the general least squares adjust-
ment process is developed. The model provides a method for combining geo-
metrical BC-4 optical data with satellite dynamic and gravimetric data into a
general geodetic solution. The geodetic solution consists of a geocentric system
of station coordinates and spherical harmonic coefficients for the geopotential,
A previous solution, Lerch et al (1972), for a Goddard Earth Model (GEM 4) con-
tained 514 geodetic parameters but did not include any geometric data.

A map of station locations is presented in Figure 1, illustrating the distribution
of 45 BC-4 stations associated with the geometric data and 61 stations associated
with dynamic data from electronic,laser, and optical tracking systems used pre-
viously in GEM 4, Figure 2 illustrates local datum ties between the dynamic and
geometric stations and BC-4 baselines obtained from the geodimeter and tellu-
rometer systems that are to be employed in the new combination solution.

II. BASIC DATA SYSTEMS AND REPRESENTATION

1. Data Systems

Four basic geodetic data systems are employed in the combination solution and
are listed with their associated solution parameters in Table 1. These systems_
are the BC-4 geometric (B), gravimetry (G), dynamic satellite (D), and survey (S).

In the survey data system S, the baselines and ties were illustrated in Figure 2,
The ties correspond to relative position coordinates for nearby geometrical and
dynamical stations and are treated as observations with statistical errors based
upon local survey accuracy. Similarly the baseline distances are treated as
statistical observations,

The satellite related parameters associated with the BC-4 system B and the
satellite dynamic system D require preliminary processing for initial estimates
of the parameters. The initial processing will be discussed in a later section.
There are some 20,000 satellite position parameters associated with 1100 BC-4
events of two, three, and four siations observing the satellite simuitaneously at
6 to 7 reduced points of satellite position for each event, There are some 350
weekly arcs of satellite dynamic data on 27 satellites, where some 400,000 ob-
servations of electronic, laser, and optical tracking data have been processed.
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Figure 1. Station Locations
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Figure 2. Basgelines and Station Ties (Survey Data)



Table 1
Basic Data Systems and Solution Parameters

Solution Parameters Unknown
Symbol Data System (anknowns) Symbol
B BC-~4 geometric station location coordinates X
satellite position components
for each geometrical point j q,
G Gravimetry potential coefficients c
(spherical harmonic)
D Dymamic satellite potential coefficients c
' station coordinates Z
satellite orbital elements
and tracking system parameters
associated with each satellite
arc i P,
s Survey station coordinates connecting
{Baselines and ties) | BC-4 baselines x, in x X
station coordinates connecting
tiesx, inx,z_inz X, 2

The satellite dynamic parameters consist of six orbital elements and modeled
force parameters at a given epoch on each weekly arc. Tracking system parame-
ters for certain electronic systems have been included in the modeling and are
associated with the initial processing on a weekly arc. The gravimetry data
system G consists of a global distribution of 5° equal area blocks of mean gravity
anomalies, Rapp, (1972).

Because of the large number of satellite parameters in the systems Band D, a
least squares matrix model is developed that will reduce the matrix to a form
containing just the geodetic parameters. The reduced form will then be suitable
for computational solution,

2. Representation of Data Systems

A total data system C, which will be used to encompass the four basic data
systems, is represented as



C: (0, C viy) 1)

where each symbol denotes a column vector as follows:
O — cbservations
C — computed quantities corresponding to the observations
v — observation residuals (v = O - C)
y — the solution parameters or unknowns (see Table 1)
The column vectors are further defined in Section III where the method for the

solution is developed. The four basic data systems, subsystems of C, are simi-
larly represented and defined as in the above form (1), namely

B : (Og B, b; x, Q) (2}
G : (04, G g ©) (3)
D: (O D, d; c, z p) (4)
S : (O S s; z, x) (5)

where the solution parameters ¢, z, X, p = [p;], 9 = [q;] are defined in Table 1
for each of the data subsystems. Using the form above, data subsystems of D
and B are represented for each dynamic satellite arc i and geometric satellite
position point j, respectively as follows:

5. : (oDi’ Di’ d;c z Pi) (6)

H 1

el

i ¢ (Opy» By, bys %, q;) @



III. DEVELOPMENT OF THE METHOD

1. General Matrix Model for the Least Squares Solution

A general matrix model of the least squares adjustment process is developed for
the complete data system C given in (1). The model will be subsequently employed
to develop a reduced form of solution for the geodetic data subsystems.

In the data system C the vector symbols, O, C, v, and the unknown sclution y
were defined under (1), The vector C = C(y) and the residual.vector is

v = 0-C@) (8)
which in component form is

[v.] = [0, - C ()] forn = 1toN 9

where C_ (y) is the computed quantity corresponding to the observation O, and is
a function of the parameters in y. The linear condition equation for v in the
least squares adjustment process is given by use of Taylor's expansion as

v = v_~-C, Ay, (10)

wherev, = O - C(y,), ¥y= Ay +y,,Y, is a column vector of initial estimates for
each component y, in y for k = 1 to K, and the matrix of partial (derivative) co-

efficients
B
Cy = —a"?;;_ (11)
NXK

in which the partial coefficient element lies in row n and column k and Cn (v) is
given under (9) above, Cy is evaluatedaty = y_.

The least squares minimum condition is

Q = VTWVV = minimum {12)



where W, is a diagonal weight matrix with each element

w = — forn = 1 toN (13)

in which Un2 is the error variance for the observation 0n . The minimum condi-
tion for (12) is obtained from

oy

90 = [BQ:I = 0 fork = 1 to K (14}
ayk

which with use of (10) and (12) will give the normal equation

CfW,v = 0O (15)
or
(CrW,cH dy-clf¥ v, = 0. (16)
Solving (16) fof Ay will give
By = (CTW,CY CTW, v, an

and the solution y is
y = y, tAy.

Under ideal conditions, where the modeling of C_(y) for O  is complete except
for a random observation error which has normal distribution and variance gn2,

the least squares solution for y may be shown to satisfy the maximum likelihood
principle. See Anderson (1958).



2. Reduced Form of the Normal Equations for the Geodetic Subsystems

Using the column matrices defined for the total data system C under (1) and
those for the geodetic data subsystems in (2) through (5), the following matrix
partitioning is given for C in terms of its data subsystems:

0p D d
Oy B b
0 = C = v = 0-C = (18)
Og G g
| Os | S LS

I_Wd ] ¢ Ac]
z Nz
LS
W= v ° ix Ay = |Ax (19)
W
g p Lp

where the solution parametersp = [p.], q = (4,1, x 2, and c are defined in
Table 1, the weight matrix W was defined under (13) for C and W, , W, W,

W, are defined as diagonal weight matrices respectively for the subsystem ob-
servations as ordered in O above. When v and W, above are substituted into (12),
Q@ then becomes

Q = dTW,d+bTWb+g"Wg+tsTW s (20)

In terms of the variables associated with the data subsystem as given in Table 1,
the linearized residual equations may be expressed by Taylor's series for each
subsystem as



d = d "DCAc—DzAz—DpAp

b = b, -B, Ax-B Aq
(1)
g ° g -G/ b

c

s = s, ~S Ax~8 Az

where the subscript (0) corresponds to the initial estimate of the residual vector
which is analogous to v under (10), and the matrices of partial coefficients are
defined analogous to C, under (11), for example, in D, above D would correspond
to C and z to y. Differentiating Q with respect to each of the variables as ordered
in (19) for y and setting the result equal to zero in order to obtain the minimum,
the following normal equations will result with use of (21) for each of the vari-
ables:

D:de+GcTng = 0 for ¢

DIW,d+sIW s = 0 for z

BfW, b+ STW s = 0 for x (22)
DPT W,d = 0 for p
BIw b = 0 for g

Substituting the relations for d, b, g, and s in (21) into (22) will produce the
normal matrix equations in terms of the unknown parameters and the initial
residuals. This result between (21) and (22) is equivalent to the result between
(15) and (16) for the total data system C. If C, is partitioned in terms of the
partial coefficient matrices in (21) then by substituting its transpose, v from (18),
and W, from (19} into (15) the normal equations (22) will result directly.

The last two equations in (22) are used with d and b in (21) to express the satellite
related parameters (4p, £ g) in terms of the geodetic parameters (Ac, Ax, A z),



When these results for Ap and Aq are substituted into d and b for the first three

equations of (22), the reduced normal equations will then be obtained for the
geodetic parameters. This process just described is carried out below.

Proceeding in this manner then from (22) and d in (21)

= T
DYW,d = DiW,(d, ~D.,Lc~D,Az~-D Ap)

Solving (23) for Ap and substituting the result back into d will give

d = P(d, -D Ac-D,Az)

where

"
1
—
I
(o}
il

= hb|
I

(DT W, D )~' DI W,
Ap = ;(do -D Ac-D,Az)
Proceeding similarly as in (23) with
BIW,b = 0
then

b = Q(b, - B Ax)

where @ and Aq may be derived as in (25) through (27).

(23)

(24)

(25)

(26)

(27)

(28)

By use of d in (24), b in (28), and s and g in (21) the system (22) is expressed in

matrix form for the geodetic parameters as follows:
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[T)cc + Gee Dcez 0 ] (Ac ] Dco + Gco—
DczT Dzz + Szz Szx Az = Dzo + Szo
0 SzxT Bxx t+ Sxx | A x| | Bxo + Sxo|
where the above symbols are defined as follows:
dynamic satellite system D
Dcc = DIWD, Dcz = DIWD, Dzz = DIWD,
Dco = DIWd Dzo = DTWdO W= Wdls
BC-4 geometric sysiem B
Bxx = BITW QB, Bxo = BIW Qb,
gravimetric system G
Gee = GIW, G, Geo = GIW g
survey system S
Szz = S;I'Ws S, Szx = S‘;I‘Ws S, Sxx -~ was S,
Szo = SZT W, s, Sxo = SEWS Sy

11

(29)

(30)

(31)

(32)

(33)



In the computations the results for D in (30) and B in (31) are expressed in terms
of reduced results obtained from the observations on each satellite arc i with
satellite parameters p; and on each satellite geometric point j with coordinates
q;. This situation is represented by the data subsystems D, _in (6) and B in (7).
The data sets and associated partial coefficient matrices of D and B may be par-
titioned in terms of these quantities for their respective subsystems to obtain the
detailed results,

The procedure for these results will be briefly derived. From ]—51 in (6) and D
in (4)

d = Oy - D (c,zp,) for each 1 = 1 to I, (34)

1

d = (d.] D = [p] Ap = [Ap,] p = [p;] (39)

Using Taylor's expansion for d; in (34)

4, = d, -Hbc-20b8z-PAp, (36)

1

then, from d in (21) and sinced = [d,],

d, = I[q,.] D, = [H] b, = [z,
(37
[ p, o]
P2
D =
P
| © Py

Defining the weight matrix W, for O,, and ordering it on the diagonal of w, for
= 1 to I and using the above results for (34) through (37), then (23) through 27)
become for each arc i

12



PIW,d, = PTW, (d,, -HAc-2ZAz-PAp) = 0

i di —i

di = Pi(d;, ~Hdc-ZAz)
P, = I-PP (38)
P, = (PT W, P,y PT L

Ap, = P,(d,, - H,Ac~ Z Az)

and the results in (30) become

Dec = Z (HTW H.) Dcz = E (HTW.Z.) Dzz :Z (ZTVW.Z, )

i i (39)

Dco = E (H'}‘Widio) Dzo - ? (H'fwidio) W, :wdiﬁi
i

where the sum ranges from i=1to 1.

Treating the system ﬁj in (7) in a like manner to Bi above, the result in (31)
would become

J _ J N
Bxx = Z (XTW.X.) Bxo = Z (XTW, b, ), (40)
i=1

i=1

10

where Xj corresponds to Z_, \T\fj to V_Vi, and bjc tod. .

The solution for the geodetic parameters is obtained through the inverse of the
reduced normal matrix in (29). The inverse matrix also represents the variance-
covariance matrix for the geodetic parameters, as the weighting for the observa-
tions given in (13) is inversely equal to the variance of the observation errors.

13



3. Computational Procedure

In practice the contributions to the reduced normal matrix for each of the geo-
detic subsystems are computed separately and then combined as in (2%). The
terms for the reduced normal matrix for each of these four systems are given
separately in equations (30) through (33). The above practice is gimilarly true
in the computations for the subsystems D; of D and B, of B where their respec-
tive matrix terms are identified and combined as in (39) and (40).

The initial starting values for the geodetic parameters are obtained from a pre-
vious geodetic solution, survey data, or through a separate process of data
analysis.

3.1 Satellite Dynamic System

The initial observation residuals and dynamic satellite parameters for the system
-131 are obtained from a preliminary reduction of the observation data on a weekly
satellite arc. In this process a bias parameter is modeled for certain electronic
systems for the observation data on each satellite tracking pass. Since a large
number of these parameters may occur within a weekly arc span of data, each
bias parameter is eliminated through the back subsitution process at the end of
the associated tracking pass. Numerical integration is employed for the satellite
orbit and the preliminary reduction of the data on the weekly arc is carried out
through the least square process of successive iterations. The normal matrix
for the system ﬁi is formed immediately after the preliminary reduction.

3.2 Geometric Geodesy Technique

In the computations for the BC-4 data system the reduced normal equations (31)
may be obtained through the formulation of condition equations which are inde-
pendent of satellite parameters. This technique is described in the appendix of
the report, and it includes the constraint equations for the station coordinate
ties and baseline distances from datum survey. In addition it provides for use
of simultaneous MOTS and laser data, which has recently been analyzed by
Reece and Marsh (1973) for stations in the area of the United States.

IV. ANALYSIS OF SOLUTION AND GEODETIC RESULTS

The geodetic solution may be tested and analyzed with the use of survey data in
several areas of investigation.

The mean sea level height (MSL) from station survey may be compared with the
height of the station above the geoid as computed from the solution of the poten-
tial coefficients and the geocentric station coordinates including the reference

14



ellipsoid, Lerch et al (1972). In view of the distribution of stations in Figure 1
the dispersion of the differences between survey and computed values about a
mean line may be analyzed. The MSL heights from survey are generally re-
ported to be accurate to about a meter for these stations. Any significant offset
in the mean line from zero differences may be associated with the scale for the
reference ellipsoid, and thus the equatorial radius (a,) of the reference ellipsoid
may be adjusted. Any significant dispersion in the differences (including system-
atic differences) may be analyzed in terms of geographical areas and in terms of
various tracking systems such as the electronic, laser, and optical systems.

The dispersion may be analyzed in terms of the geopotential model particularly
in areas where the gravimetric measurements are not available. These analyses
may be supported with separate tests for geoid heights and station coordinates

as indicated below.

Geoid heights computed from the potential model may be tested and analyzed in
certain major survey areas that contain astrogeodetic deflections of the vertical
and detailed gravimetric data, Vincent et al (1972).

Through adjustment for scale, orientation, and datum shift the station coordinates
between datum survey and the solution may be analyzed. In such an analysis for
a geocentric station solution by Marsh et al (1971), an rms agreement of 3.5 me-
ters on station coordinate differences has been obtained for 20 stations on the
North American Datum,

With a solution derived from the geodetic data systems and use of the above
analysis the following geodetic results may be obtained:

1. A global geoid represented in terms of spherical harmonic coefficients.

2. A world datum of station coordinates including an adjustment for scale,
orientation, and datum shift for local datums.

3. Mean equatorial radius(a_)for the Earth,

4, Mean equatorial value of normal gravity (g_) may be derived from the
gravimetric data, Rapp (1972).

15
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APPENDIX

Reduced Normal Equations for Geometric Satellite Geodesy
Including Constraints from Datum Survey

The method developed here for the least squares normal equations is based
upon the technique of formulating reduced condition equations where the satellite
parameters have heen eliminated. The data considered consists of simultaneous
events from MOTS (Minitrack Optical Tracking System) and laser systems on
GEOS-I and 1I, the BC-4 worldwide camera network on PAGEOS, and local datum
survey ties and baselines. The reduced condition equations are developed in this
appendix and a case is considered for the treatment of correlated observations.

1. Technique for the Normal Equations

The mathematical analysis leading to the formation of normal equations for
the geometric adjustment of coordinates of tracking stations is based on the fol-
lowing type of events:

1. Two cameras observe the satellite simultaneously

2, Three cameras observe the satellite simultaneously

3. Four cameras observe the satellite simultaneously

4, Two cameras and one laser observe the satellite simultaneously,

Condition equations resulfing from a given set of simultaneous observations
are of two types:

e Coplanarity equation, which requires that two observing statlons and
their directions to the satellite lie in the same plane.

e Length equation, which requires that the satellite position satisfying the
two-station coplanarity relationship also agrees with the range from a
third station.

Corresponding to each event condition equations of the following form are

used:
m n
% av, + % bj X, +¢=0 (1)
i ]

ERBCSDING PAGE BLANK NOT FILMIDS
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where a , bj , and ¢ are known constants derived in the subsequent sections,
¢ is the discrepancy in the condition equation

v. are the unknown residuals (adjusted minus observed values)

x. are the unknown corrections to stations' Cartesian coordinates
{adjusted minus initial values)

m is the number of observed quantities

n is the number of unknown coordinates.

The number and types of condition equations for events 1 through 4 above
are as follows:

e For a two-camera event, one coplanarity equation is used.
¢ For athree-camera event, three coplanarity equations are used.
e For a four-camera event, five coplanarity equations are used.

e For a two-camera, single-laser event, one coplanarity equation and one
length equation are used.

The number of condition equations for each event corresponds to the number of
observations less three, since the observation equations are reduced to a form
where the three satellite position coordinates are eliminated. Each observing
camera contributes two observations in an event and an observing laser contrib-
utes one observation. Each of the coplanarity equations for an event involves
distinct pairs of observing stations,

Additional condition (constraint) equations specify coordinate differences
and also take the form of equation (1). Constraints are treated statistically,
similar to observation equations, where values and accuracies are obtained from
a priori information based on datum survey. Two types of constraint equations
are applied:

e Distance equations (baselines), which require the distance between two
stations to remain near a given value

e Coordinate-shift equations, which require the differences between co~
ordinates of two nearby stations to remain near a given value, This
constraint is used to connect the stations in the geometric geodesy with
those in the dynamic satellite geodesy.

. For a geometric only solution a third type of statistical constraint may be
applied on individual station coordinates in order to fix the origin of the system,
A priori values for these constraints should be taken from a different source
than datum survey such as from a previously determined geocentric solution in

20



a center of mass reference frame. This constraint is not used in the combina-
tion‘ solution with dynamic satellite geodesy.

For each event (or constraint) &, denote the associated condition equations
of the form (1) in matrix notation as

A Vp + BpX +Q =0, (2)

for which an example of the dimensions and elements of the matrices are given
below, Minimizing @ below w.r.t, the unknown station coordinates in X and
residuals in Vi, will lead to the formation of the normal matrix equation. The
form Q is

K

Q= ; (vgw%v% - ZK};(A%V& + B%X + C&)) {3)
=1

where Wj is the diagonal weight matrix for the observations in Vp and each
Ay is a column vector of Lagrangian multipliers corresponding to the number
of condition equations in event 2. The resulting normal matrix equation to be
combined with the gravimetric and dynamic satellite geodesy systems is

K

TX 4 ;B};M%IC% -N, @
=1

where
K
J= Z (B};M‘E{‘B&), ()
f=1
My, = (Ap Wy 'AT) (6)

The largest dimension of Mg is 5 X 5 corresponding to event of type 3 where
there are 5 coplanarity equations of condition. This case has 8 cbservations and
the dimensions of Ag, Vg, Bf, and Cj, are respectively 5 X 8, 8X 1,5 X N_, and
5% 1. N, is the total number of all station coordinates and By, (5 X N, ) would
contain for each of the 5 rows only 6 non-zero elements, corresponding to the
b. coefficients in (1) for each distinct coplanarity equation involving two observ-
ing stations. Each row of Ay has 4 non-zero elements corresponding to the a;
coefficients in (1), associated with the two observing stations in each coplanarity
equation,

21



By employing a suitable set of constraints including those that fix the origin,
N may be set equal to zero and a geometric only solution for X can be derived
from (4).

Condition equations for coplanarity, length, and constraints are developed
in sections 2 through 5 and section 6 treats a case for correlated observations.

2. Coordinate System

Camera observations in o and & are transformed from right ascension «
and declination § to earth-fixed angles 5 and . The conversion of « and 3,
as corrected for precession, nutation, and polar motion, to the angles 8 and ¥
is straightforward. The topocentric angle 7 is measured with respect to the
equatorial plane and is equivalent to §, i.e., ¥ = &. The angle 3 is measured
from the Greenwich meridian in a plane parallel to the equator and is

8= a - GHA (7)

where GHA is the Greenwich Hour Angle at the epoch of the observation,

3. Coplanarity Equation

The coplanarity equation requires that the volume of the parallelepiped
defined by the two station-to-satellite vectors and the station-to-station vector
and their respective errors be zero. The two station-to-satellite vectors are
. defined in the local terrestrial coordinates as

(8)

—

P, =uw i +v, ] +wKkK

where

c
1

cos y, cos f3;

<
1}

; = cos ; sin jB, (1 =1, 2)

W, =sinvy,

The station-to-station direction vector 13'3 is similarly defined in spherical
coordinates by use of

- 3
)(2 Xl

,33 = tan! (u) 028, g2 (9)
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Z, - Z
V5 = tan! z ! jl A Vs <I (10)
((X2 _ X1)2 + (y2 _ yl)'Z)l/Z 2 2

where x, y, z are the Cartesian coordinates and the range between the station
is

Iy = ((x, - xl)z + (¥ - y1)2 +(z, - 21)2)1/2 (11)

The volume of the parallelepiped defined by these vectors (@, , P,, P,) is given
by their triple scalar product, which is the determinant

cos ¥, cos 8, cosy, cos 5, cos7y,cos /[,
F, =|cos ¥ sin By cos ¥, sin [32 cos 7y, sin I8 (12)

sin 7y, sin vy, sin vy,
and the adjusted volume through linear expansion is

F=F +AF=0
The coefficients of the expansion are then given by
BFO

a, = ga = cos 7y, siny, cosy, 005(53 - ,81‘) - cos 7y, cos Yy, siny, cos(f, ~ /31) (13)

oF
=0 Py : . .
a, = o, = COS ¥, COSY, COS Y,y sin(f; ~ B,)-siny cosy, siny, sin(f8, - ,Bl)
+ sin o2 sin ¥, €OS ¥, sin(,b"3 - 51) (14)
oF,

a = ——

- . . 15
3 3/32 = f€os 7y, [cos Yy 1Y, 005(52 - )81) - sinvy, cosvy, cos(,@3 - ,82)] (15)
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aF, -

a, = = - €OS 7, COS 7, COS 7, Sin(ﬁa - ,131) - siny, siny, cos 3 :-;in(ﬁ3 -,32)

4 372
- €os Y, sin Y2 sinv, sin(;!i‘2 - ﬁl) (16)
oF |
b, = a—ﬁ‘l = cos y,[siny, cos Y, cos(, - 62) ~ cos ¥, siny, cos(f; - Bl 7
3
oF, |
b2 = #: COS ¥, COS ¥, COS 7, sin(ﬁ2 - /31) - gin 7, €OS 7, sin ¥ sin(,B3 - /5'2)
3
+cos 7y, siny, siny, sin(ﬁs_ﬁl) (18)

Since 8, v7,,5,, and ¥, are observations, A8, Ly s OB, and vy, are residuals
and are designated Vis Vo Vg, anddv4 , respectively. A,BS and &rya are the inter-
station direction adjustments. The variables to be solved for are corrections to
the stations Cartesian coordinates. The transformation of unknowns from inter-
station direction to Cartesian coordinate corrections are given by equation 26,
Then there results an equation of the form of (1).

4. T.ength Equaticn

The length equation is developed for two cameras and a laser DME observ-
ing the satellite simultaneously. Assume the existence of two cameras (A and
B), the lagser DME (L), and the satellite (S), where directions from the cameras
to the satellite are observed simultaneously (A to S and B to S) and a range is
observed at the same time from L to S. These quantities and auxiliary vectors
and angles are shown in Figure A-1, Assumed values of coordinates of the
cameras and the laser system are used to calculate initial estimates of the
directions and distances hetween the cameras and the laser. By taking scalar
products of the station-to-station and station-to-satellite vectors the cosines
of the angles, £,7n, and { are obtained as follows:

cos &£ = 751-,232 =sin 7 sin ¥, + COS ¥, COS Y, COS(,BZ - /31) (19)

COS 77 = P;0, = Sin7y, sinvy, + cos , cos ¥y cos(f; - /31) (20)
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5 (SATELLITE)

(CAMERA)

A { CAMERA)

L {LASER)

Figure A-1. Geometry for Two-Camera and One Laser
DME Observing Simultaneocusly
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cos { = ,_0'2-,6'4 - gin Yy sin ¥, + €OS ¥, COS 7, cos(,64 - /32) (21)

where B 1» 7 8,,and y, are directions to the satellite,
;5’3 » ¥, are the inter-station angles for the two cameras, and

B, ¥, are the inter-station angles for one camera and the laser
system.

From Figure A-1the law of cosines will give, corresponding to the laser
length s

F=r?4+b?-2brcos {-s2=0, (22)

and the law of sines will give for b above

b= as%nn.
sin &

Through the use of (19) through (21) we expand F linearly about the values of

a, T, B, ¥, By, 74 obtained from the initial station coordinates, and the values of
51 y Y1 52, 7,y and s, from the observations. Then we have using differentials
as adjustments (d = A)

F=F, +§‘da+aFdr aFdﬁ +...+%Ed5:0
8

da BB

Divide F through by q = 2(b - r cos {) and denote the result by

aldﬁl ¥ azd’y1 + a3d/5’2 + a4d')"2 + asds + bldB3 + bzd')/3 + bada + b4dﬁ4 £ bsd')f4

+ bﬁdr +C=0 (23)

where C=F, /q, and the differentials on the a; coefficients are the observation
residuals v, for i= 1to 5. This represents the laser length equation, The co-
efficients and C are evaluated from the initial values, where F, is obtained from
the misclosure of (22) and the coefficients in {23) are as follows:

26



a, = P/sin£-P/sinny b, = P/sinm (24)
a, = Pz/sinf-Ps/sin’q bZ:_PS/sin'q

b, = sing/sing
a, =-P/sin&-P/sin{ b = B /sin{

It
1

a, P4/sin§—Pm/sin§ bs-—Pu/sini;

.aS:-s/(b—rcos £y b (r =bcos Q)/(b-rcos 4

B ‘and where the P's are given as

o -
I

) b cot £(cos ¥, sin(52 - /3’1)] cos ¥,
P,= bcot lcosy, siny, - siny, cos 7, cos(f, - B
P,=-P,
P, = b cot £[sin ¥, €OS ¥, — €OS ¥, sin Y nm::s(,B2 -ﬁl)]-
_ acosT7 . _
P, = <inE [cos ¥, COS ¥, sin(f, -ﬁl)] |
a cos . . - :
P = _S_ln_; [cos 7, sin 73 - siny, cos vy, CDS(»S?, —,131)]-
g P, =-F,
Rz g Isinoyeoshimcosy sinyycosf - A ¢
P e 2 ) [cOs ¥, cOS 7Y, 51N - B
o9 (b- r cos é) leos 7, ?4 s =) _
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- br sin { . ) ) |
Py = (m) {cos ¥, Siny, ~ sinvy, cosy, cc.s(,B4 ﬁz)]
Pll = _Pg

_ br sin { ; ' |
P12 " (b - T cos g) [sin ¥, COS8 Y, ~COs Y, SinY, cos(f, - /82)]

In order to obtain the desired form (1) for Cartesian station coordinates, the
coplanarity and length equations are transformed from ¥, 5, r variables to x,
y, z variables by using the relationships

X —-X, =rcosycasf3

= rcosysingfs

M‘<:
1

<
i

Z_ -z =rsiny (25)

Differentiating these expressions yields

—dxz - dxl_] [_ ¢ cos vsinf3 ~rsinycos cosvycosf dﬁ_‘
dy, --dy1 =| rcosycosf3 -rsinysinf cosysinﬂ dy (26)
Ld22 - dzl_ i 0 I cCos -y sin 7y | |_dr_

Inverting Equation 26 produces the transformation

_dB— B -sin 8 cos 0 dx,, - dxl_]
rcos?y r cos 7y
_|-sinycos 8 ~sinysinf3 cosvy 97
dy| = dy, - dy (27)
r r r 2 1
dr cosycos 3 cosysinf8 sinvy dzg-clz1
L J L 4 L i
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5. Condition Equations for Constraints

The three types of condition equations are: (1) coordinate equations,
(2) distance equations, and (3) coordinate-shift equations. As indicated pre-
viously constraints for station coordinates, distances (baselines), and coordinate
shifts (local datum ties) are based upon a priori information, Such information
is treated statistically as in the case of satellite observations, and hence weights
are applied corresponding to a priori errors.

5.1 Coordinate Equation

Assume the input coordinates of the ith station are coordinates for which
a priori information is available. Let the input values of Xi Y, 2, be X.o

Y,, , Z,, » and denote the adjusted coordinates as
dx; = X = X, = %,y
dy, =Y, - Y, = %, (28)
dz, =2, -Z,, =%
then the constraint equations in the form of equation (1) are simply
vl—'z - xi—2 =0
Viep = Xy T 0 (29)
v. -x =10

5.2 Distance Equations (Baselines)

The condition equation for the baseline distance q between the rth and sth
ground stations is

-dg + cos ¥ cos B(dx, - dx_ ) + cos ysin S(dy_-dy ) +siny(dz, -dz)=0 (30)

where v and 53 are used as in (9) and (10) and the differentials are the unknown
gtation adjustments, The adjustment
da=q-q =(a~-9)-(q -4q)
=v-C (31)
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where ¢ is the solution value, q_ is the computed value based upon the initial
gtation coordinates, and q, is the a priori value for the constraint.

In conformity with the previous notation the terms dx_, dy, , dz_, dx_, dy,,
and dz, are replaced by x._,, x __,, X, X,_,,X__,, 8_, and dg by (31) to obtain

-V + cos Y COs ﬁ(xs__2 - xr_‘z) + cos ¥ sin S(x . xr_l) + sin Y(X, ~x)+C=0 (32)

5.3 Coordinate-Shift Equations

For two nearby stations denote the difference in coordinates as

szxz—x1

D =y,-v (33)

Since the results are similar for the three equations we will treat just one equa-
tion of condition. For the x component the differential is

—dp, + dx, - dx, =0, (34)
and as in the case of the distance equation (31)

de-—-Vx_Cx’ v, ZD'_D ] C :D -D (35)

where D, is the unknown difference, D, is obtained from local survey station
coordinates, and D,_, is computed from the initial input of the station coordinates.
For the ith and jth stations, using the notation of the form (1) where differentials
are rleplaped by corrections X, and X the condition equations for (33) are

‘j': . vx ,-+;‘xj“—é ’_ xr-z + Cx =0

RS EL TR 0

'_-Vzt.xj'.'fxi +Cz:0
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6. Correlated Observations

The model described above was developed for camera systems that observed
simultaneougly the flashing lamps on GEOS-I and II, and then the model was
employed to include the BC-4 camera network that observed the PAGEOS satel-
lite, A BC-4 photograph taken on PAGEOS by an observing station, s, was re-
duced to 7 time points (k= 1 to 7) of satellite observation angles (23, A}). The
reduced observations fy;;i and 6{1‘" are correlated separately in each type among
the points % = 1 to 7. The modeling for the correlated observations is presented.

Consider 7 events of the type (1), (2), or (3) described in section 1, where
respectively 2, 3, or 4 stations (S = 2, 3, or 4) observe the satellite simultaneousl;
at each of the 7 reduced photographic points & = 1 to 7. Thus for each event
there are 28 simultaneous observations, namely (Ygz.ﬁ,ﬁu) for s=1to S, Let p
denote this configuration of S stations and 7 events, then for each p there are
7 sets of matrix condition equations of the form (2). Denote these as

AV, +B X+C, =0 (37)

where by row partitioning for k = 1to 7

v o= VB
c, = [l (38)
B, = [Bf)

and AF; lies along the diagonal submatrix path of Ap (with zero submatrices
for off diagonal blocks)

A = IDIAGAF]- (39)
The submatrices V£, Bf, and A are given as before in (2) for a particular
event, but here the event type for 8= 2, 3, or 4 stations is fixed for the 7 events
for a given configuration p.
Denote the variance-covariance matrix of the observation errors as
_eaoTT
B, = EF, V) (40)

where V, corresponds to the observation errors (noise) in V.

31



The normal equations for the BC-4 observations is obtained by minimizing

Q =Z Q, (41)
P

for the unkmowns Vp, and X, where

vyl ly T 42
Q= VP ¥y = 2(AV, + X+ ) >\p (42)

and
= DG

for which »{ is a vector of Lagrangian multipliers defined as in (3) for a given
event. Hence the normal equations will have the form given in (4) through (6).
Thus for each p the normal eguations are

I,X+BIC =N, (43)
where

T, = BIM !B,
M, = (AR, AL): 44

and the total set of normal equations for all p are then

N:E N,

P

It is of interest {o compare the matrix M derived from 7 events to that of
My, given in (6) for a single event £. Take the case of S = 4 for which the dimen-
sions Ag, Vi, , and Wy, were given under (6) respectively as 5 X 8, 8 X1, and
8 X 8, and for which there were 8 observations and 5 coplanarity equations of
condition from the 4 observing stations in a given event. Consider 7 events of
the same type as in the configuration p for S = 4, denote My as M§ for k=1
to 7, and assume correlations are absent as in the previous modeling. Then
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M, = = DIAGME]- (45)

— 35 35

where

ME = ApwE) (AR (46)

and since correlations are assumed absent here
P, = [DIAG(W )™ .

With correlations the same diagonal blocks in (45) arise for M_ in (44) since
in each event % all observations are uncorrelated, but similar off cfiagonal blocks
also exist which is now shown. Using the submatrices V,!R’ for Vp in (38) and
dropping the superscript p on the submatrices, then the variance-covariance
matrix in (40) becomes

P, =EV, VD) = [EV,V[) fork=1to7 and £=1 to7, (47)

which corresponds to 49 sublocks or submatrices in P_ . For a given event &
and £ the only covariances occur when the station s and the angle ¥} or 5,;:
are the same. Denote the observation errors for a given £ as (where T = true,
o = observed)

YD - (O
BHT) - 75(0)

(48)

Y, = ' = [@pls i=1to2s,

YE(T) = V()

ZAM - (0 28% 1
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then for a given & and £

T T - S . . ' (49)
ECWVE) = B, 90 i=1te2s, j=1to 2S.
and from the definition of the correlations
E@i&?j{):ofj(ﬁ,fﬂ):o forifjforallkandd
= o2 (&, 1) for covariances & -4, (50)

= o2 (k, k) for variances & = 4.

Thus, in each sublock of a given * and 1, the off diagonal elements are zero and

E(V,V;) = [DIAG o2, ¢k, )] o 25 (51)
= Dpg
and
P = [D%]- th, £ = 1to7), (52)
Denote
M, = Ml (R, 4= 1to?), (53)

and with use of (38}, (39), and (52) in (44) then by (53)

_ ) 54
Mp2 = [A%]J%%Aﬁ(zsfa)x(zs—s) &4

Now

Mas, = MDrp AL (®9)
= A?{W%IA}% = M

which is the same as in (46) for the uncorrelated case,

The block form [My ] for M , Wwhere Mp, is given in (54), provides a con-
venient method for the computatmns of M However in the present case of cor-
related observations there are 49 such blocks whereas only the 7 diagonal blocks
My, are computed for uncorrelated observations as in (45) or (55). The largest
inverse matrix M, to be inverted occurs for the case of S =4 and which has
dimension 35 X 35 whereas previously for the case of uncorrelated observations
the largest matrix was 5 X 5. Correlations are generally large among the
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reduced observations of a photograph. Thus the geometric normal equations
should be analyzed further to investigate the overall effect of the correlation on
the final combination solution.

NASA—GSFC
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